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Training Neural Networks with Weight Constraints

John R. McDonnell
NCCOSC, RDT&E Division

San Diego, CA 92152

ABSTRACT

Hardware implementation of artificial neural A var.ety of adaptation difficulties can be
networks imposes a variety of constraints. Finite associated with hardware implementation of
weight magnitudes exist in both digital and analog neural networks. Hardware issues which
devices. Additional limitations are encountered due
to the imprecise nature of hardware components. greatly affect learning include finite
These constraints can be overcome with a stochastic magnitude weights, quantization error and
global optimizationstrategy which effectively searches imprecise knowl-dge of the activation
the range of the weight space and is robust to function. Weight and node perturbation
quantization and modeling errors. Evolutionary strategies have been suggested [1,2] as an
programming is proposed as a solution to training alternative to using error back-propagation
networks with these constraints. This work
investigates the use of evolutionary programming in for training analog implementations. These
optimizing a network with weight constraints, strategies provide an empirical gradient
Comparisons are made to the backpropagation descent approach given imprecise a priori
training algorithm for networks with both knowledge of the analog activation function
unconstrained and hard-limited weight magnitudes. In studying quantization error, Xie and Jabri

[3,4] have applied a statistical model to
INTRODUCTION determine the effects of quantization error in

Hardware implementation of neural digital implementations.

networks poses many challenges. The A modified weight perturbation strategy has
magnitude constraint imposed by been developed [4] as an empirical gradient
implementing neural network weights in training technique for digital
electronic devices artificially constrains the implementations. As pointed out in [4],
range of the weight space over which the quantized weight values represented by a
search takes place. Further, standard off- low number of bits can lead to local minima
line training approaches may produce poor which are flat plateaus. Thus, a gradient
results due to the imprecise nature of analog type search may yield poor training
devices. This work investigates the use of performance for a digital implementation.
a stochastic multi-agent search strategy for To overcome this limitation, Xie and Jabri
optimizing feed-forward, fully connected, incorporate a stochastic mechanism which
neural networks. An evolutionary results in a "Combined Search" (CS)
programming (EP) search strategy is algorithm. The CS algorithm alternates
proposed as a weight adaptation scheme between the modified weight perturbation
which addresses these constraints, technique and a partial random search

(PRS). The PRS is applied to only one
dimension of the weight space wherein a
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,irnglle weight is randomyv chosen from a M(O)IIFI) BACK PPA)P..\( :\k'I()N
Uniform distribution over a predeterminned
range. The randomly chosen weight is kept If weught magnitudes ire haro.-iinitcd ,ul:i
it' a lower network error is achieved, the backpropagatiOn training ai o....

optimization will occur along the proiection,
The ability to avoid local minima is but one of the saturated weight space dimensai.ns.
advantage in using a stochastic search In essence, optimization wiii take piace ii

technique. Other advantages include the the image of the unconstrained weight space.
applicability of stochastic training to any To avoid being limited to the weight space
type of architecture regardless of between m saturated weights and an (n-mn
connectivity, activation function continuity, dimensional ridge (if onc exists), a moditied
and a priori knowledge of the device backpropagation (MBP) training algorithm is
characteristics. developed. Wasserman [ 131 has proposeti

function mapped weights as a means to
Neural network training using stochastic reduce neuron saturation. If function
methods is not uncommon. Simulated mapped weights are employed, then the
annealing has been applied to both function which maps the training weights to
feedforward [5] and Hopfield [6,7] the implementation weights must be
networks. Convergence aspects of the incorporated into the training algorithm.
simulated annealing cooling schedule have Figure I shows a perceptron which
been addressed by Geman and Geman [8]. implements function mapped weights as
Genetic algorithms [9] offer yet another opposed to the weight values directly. The
stochastic method for training neural weight values can be determined via offline
networks. A probabilistic backpropagation training and implemented by the weight
technique has been developed for hard- mapping function.
limited activation nodes [10]. Fogel et al.
[11,12] have taken an evolutionary
programming approach to stochastically
evolve network weights.

This work takes advantage of the
evolutionary programming paradigm to
evolve network weights which are subject to
weight magnitude constraints. Problems g (-2)

associated with quantization errors and
transfer characteristics of the device can also
be addressed with this type of training. A
comparison is made with backpropagation
training for both unconstrained and
constrained weights. For situations where
the device transfer characteristics are known
with a high degree of certainty, a modified
backpropagation technique is developed and Figure d. A perceptron with function
presented in the next section. mapped weights g(w).
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The training algorithm can be derived using 1B' hidden laver
the same approach deveioped for
bacKpropagation [141. The primary Aw - 7 f, tl'(efl

difference is that the weight mapping
function g must be incorporated in the
training algorithm. This is done by defining Similar to the activation function / the
the gradient as weight mapping function g must also be

continuously differentiable. Additionally,
V- _E _ - E 8g(w) should also be bipolar. Since a biased

aw ag(w) aw sigmoid function satisfies this requirement,

it is a likely (though not necessarily optimal)
where E is the network sum squared error candidate to be used for function mapped
and g:R-R. Using the generalized delta weights
rule for feedforward networks with

, backpropagation of error as outlined in [14], If the activation f is a unipolar sigmoid
:Y the weight adaptation equations can be function and the weight mapping g is a

written as bipolar sigmoid function of magnitude K

MBP output layer g(w) = 2K[(] +e'` - ½A]

AwV = t7fk'(netk)(tk-od)gV'(wV)oj then the weights are modified according to

Output layer
MBP hidden layer Aw'V = 71 ojl -o)(t(k-ok) o

S Aw.= tif(netj)[• 6k g(w4 ) j[(1A)oi *i.K.g(w4) + KI [K - g(w,)]

where Hidden layer

• •g~wji)Aw..i=r 77 (l-Oj)[E oJ'-Ok)(k-od9g(W;)]gj- - kw)

the remaining terms are defined in [14]. 2K[g(J) K[

It is easily verified that the above learning
law reduces to the standard generalized delta The MBP algorithm effectively constrains
learning rule if the weight mapping function the weight set magnitudes while maintaining
is replaced with the weights themselves the integrity of the gradient descent search.
(i.e., g(w) = w, g'(w) = 1) The ability to implement such a training

technique is predicated on modeling the
BP output layer transfer characteristics of the activation and

weight mapping functions. If accurate
Aw = 1fk'(netk)(tk-ok)oj device modeling is not feasible, then

alternative training methods should be
employed.
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EVOLUTIONARY PROGRAMMING fully connected fcedforxard network ,.
However it should be noted that IIP could hlk

Evolutionary programming 1,EP) is a neo- used to simultaneousiv evok\,e net-york

Darwinian search paradigm suggested by structure, connectivity and connection
Fogel et al. [15]. The application of EP as strengths.
a neural net training techiaque has been
investigated by Fogel et al. [11,12]. EP is An EP algorithm for training a neurai
used in these investigations since it network can be described by the following
addresses the difficulties imposed with steps
hardware implementation: finite weight
magnitudes and imprecise knowledge of the 1. Form an initial population of size N.
device characteristics and parameters. The 2. Assign a fitness score to each
main benefit of using an EP approach is that element (network) of the population.
it provides an efficient global search of the 3. Reorder the population based on the
constrained weight space. While number of wins generated from
Stinchcombe and White [16] have shown stochastic competition proress.
that multilayer feedforward networks with 4. Generate offspring of the best N
bounded weights and various classes of networks.
activation functions can learn arbitrary 5. Loop to step 2.
mappings, they did not specify a particular
learning technique. For this application, the initial population

was instantiated with weights E U[-0.5, 0.5j.
Other global stochastic search techniques Each member (network) in the population is
were considered. Genetic algorithms are represented by a four dimensional weight
just a subset of the EP paradigm. The EP array
paradigm does not restrict representation or
type of mutation process. Although GA 'I' = w[parentJflayer][fromnodei[tonode]
does use dramatically different mutations
(e.g., crossover mutation), it is easily Next, a cost is assigned to each network in
encompassed by the EP method. The multi- the population. As previousiy mentioned.
agent search of EP is preferred to the single- the cost or objective function used in this
agent approach of simulated annealing with study is the same as that used for
its various cooling schedules. However, backpropagation. The N members of the
simulated annealing has been successfully population generate offspring according to
implemented at the device level as discussed the perturbation
in [17]. W = W +6W

The objective function of the EP training
approach is the same as that used in where typically 6WP E N(O, SF'E) with a
backpropagation: minimize the error scaling coefficient SF. The scaling factor is
function E = ½I6PIk (tk - oj 2 where p is the a probabilistic analog to the stepsize in
pattern training set and k is the number of gradient descent methods. Figure 2 shows
output nodes. A common metric is the the effect of different scaling factors in
mean of E over the number of patterns training a 2-2 A neural net for the XOR
which will be referred to later as the MSE mapping.
of the network. This investigation assumes
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Figure 2. The effect of various scaling Figure 3. Training points for unit circle
factors on net training for XOR mapping problem.
function.

of the points selected. A 17-8-i network
was used in all experiments. A population
size of N = 50 parents with 50 offspring

A pairwise competition is then held where was used for the EP runs. The effect of
individual elements compete against hard limiting the weights in backpropagation
randomly chosen members of the is shown in Figure 4. It can be seen that
population. If network -D, is randomly backpropagation training (,q= 0.5, ce= 0.1)
selected to compete against network 4'j, then can easily form the necessary hyperplane
a win is awarded to (D, if EL < Ej. The N decision surfaces to separate the convex unit
networks with the most wins are generate circle if no weight constraints are imposed.
offspring and the process is repeated. This run resulted in 61% of the network

weights greater than a magnitude of 5. The
RESULTS problem becomes more difficult if the

maximum weight magnitudes are hard-
Hard Limited Weights limited at 5. The stepsize and momentum

coefficients were reduced to 0. 1 and 0.05,
An arbitrary mapping problem of respectively, to prevent oscillation. The
determining whether an <x,y> point is constrained network reached a final MSE of
contained within the unit circle has been 0.0297 with 36% of the weights within I%
chosen for evaluating the effectiveness of of saturation.
hard-limited backpropagation versus the EP
training approach. The training set consists The same experiment was repeated using
of 17 data points with a target value of 0.98 EP. Figure 5 shows the MSE for the best
if the point is contained within the unit member (network) in the population at each
circle and 0.02 if the point is outside the generation for both constrained and
unit circle. Figure 3 shows the distribution unconstrained weight magnitudes. Scaling
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1lard Limited Neuiron A\ctkiatiniis

(Gradient descent alorithms ar not
amenable to training muti laver perceptrons
with hard linilted activation functions.
Bartlett and Downs [101 have developed a
probabilistic backpropagation analog for
training multilayer perceptrons with hard-
limited activation functions. Since the EP
training technique is applicable to any

0 0architecture with any activation function, it
D2o_ ____ _0_0________0 ___was applied to the unit circle mapping0 000 0000 ' 0000 OG 20000 2 ' .2"5/:

Epor Hproblem with hard-limited activation
functions.

This set of experiments incorporated aFi'gure 4. Backpropagation training for binary activation function

constrained and unconstrained networks.
Aix)= I if x>O

ýOif x<O

factors of 100 and 10 were used for the
unconstrained and constrained networks, at each of the neuron outputs. Two trials
respectively. The unconstrained tri-d were run to compare the effects of hard-
resulted in 91% of the weights greater that limiting the weight magnitudes. The results
a magnitude of 5. The constrained trial of this experiment are shown in Figure 6.
reached a final MSE of 0.0208 with 36% of
the weights within I % of maximum
magnitude.
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Figure 5. EP training results for Figure 6. EP training with hard limited
constrained and unconstrained networks. activation functions. Scale factor = 100.
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Both experiments used a scaling factor of after 10000 epochs as shown in .igure 8.
100. The unconstrained weight network was The results shown in Fi-urc arc ior

able to reach zero MSE within 1000 q=0.01 and u=0.002. If too large a
generations. Out of the initial 50 parents, stepsize is chosen the initial NIS:_ can
the best parent was incorrect on just 5 actually increase before retinement takes
patterns. MSE minimization takes place in place.
discrete steps due to the hard-limit activation
function. The unconstrained network had
94% of its weight values greater than 5.
Applying a weight magnitude bound at 5
resulted in a MSE of 0.0271 after 1000
generations (50,000 function evaluations).
None of the constrained network weights 0.°,
were within 1 % of the saturation magnitude. o0,

"0.07
0.06

0.05

Hybrid Learning 0o'
0.0.3

0.05 . .

0 WO300 900 100 1500 1500 2!00 Z100 710 'C 0Given that EP provides a global search with GENERATION

asymptotic convergence properties, can
further error reduction be achieved using
gradient descent methods? This section
investigates applying backpropagation to Figure 7. EP training results for
networks with bounded weight magnitudes constrained network.
after an arbitrary number of global (EP)
iterations have been completed. Of course,
this is only applicable if the activation
function is accurately modeled. If the
activation function cannot be accurately oo1,
modeled, then a hybrid EP/directinn set oz2%

0.020a

technique similar to that given by Waagen et
at. [18] can be used. Another approach 00206

would be to incorporate the local methods 00205

developed in [1, 2 and 4] in conjunction o002ra

with EP. 0o0702
00200

00 000 2000 3000 40000 5 '000 3000 .. 3_,JQ-Figure 7 shows the training results for the Eoc.
best member in the population over 3000
generations (150000 pattern set function
evaluations) for the unit circle mapping
problem. At the iteration 3000 the best Figure 8. Constrained backpropagatfon
member in the population has a MSE of refinement of 'best' E. weight set from
0.0206. A backpropagation search with figure 7.
hard-limited weight constraints was applied
to this network. This refinement yielded
approximately a 1.6% decrease in the MSE
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DISCUSSION 'zchuni.ud , ,a , ,WIr ,,,,
peort(rm new jucmi~m:o.. I'll I aktC,! li

This studv shows that EP can yield results interacting rnechaniiumn cn il c c,,.

as good as or better than a backpropaation incorporated into the :-r• ic.vt !

training approach for 'Ooth hounded and evolution 115].
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